Phase-Fitted and Amplification-Fitted Higher Order Two-Derivative Runge-Kutta Method for the Numerical Solution of Orbital and Related Periodical IVPs
نویسندگان
چکیده
منابع مشابه
A New Family of Phase-Fitted and Amplification-Fitted Runge-Kutta Type Methods for Oscillators
In order to solve initial value problems of differential equations with oscillatory solutions, this paper improves traditional Runge-Kutta RK methods by introducing frequency-depending weights in the update. New practical RK integrators are obtained with the phase-fitting and amplification-fitting conditions and algebraic order conditions. Two of the new methods have updates that are also phase...
متن کاملNew Phase Fitted and Amplification Fitted Numerov-Type Methods for Periodic IVPs with Two Frequencies
and Applied Analysis 3 Applying the explicit Numerov-type method 2.1 to 2.3 , we obtain the following relation yn 1 − S ( H2 ) yn P ( H2 ) yn−1 0, H λh 2.4
متن کاملEmbedded 5(4) Pair Trigonometrically-Fitted Two Derivative Runge- Kutta Method with FSAL Property for Numerical Solution of Oscillatory Problems
Based on First Same As Last (FSAL) technique, an embedded trigonometrically-fitted Two Derivative Runge-Kutta method (TDRK) for the numerical solution of first order Initial Value Problems (IVPs) is developed. Using the trigonometrically-fitting technique, an embedded 5(4) pair explicit fifth-order TDRK method with a “small” principal local truncation error coefficient is derived. The numerical...
متن کاملA phase-fitted Runge-Kutta-Nyström method for the numerical solution of initial value problems with oscillating solutions
A new Runge-Kutta-Nyström method, with phase-lag of order infinity, for the integration of second-order periodic initial-value problems is developed in this paper. The new method is based on the Dormand and Prince RungeKutta-Nyström method of algebraic order four[1]. Numerical illustrations indicate that the new method is much more efficient than the classical one.
متن کاملExponentially Fitted Symplectic Runge-Kutta-Nyström methods
In this work we consider symplectic Runge Kutta Nyström (SRKN) methods with three stages. We construct a fourth order SRKN with constant coefficients and a trigonometrically fitted SRKN method. We apply the new methods on the two-dimentional harmonic oscillator, the Stiefel-Bettis problem and on the computation of the eigenvalues of the Schrödinger equation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2017
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2017/1871278